
Introduction to Software
Analytics
Dongmei Zhang

Software Analytics Group

Microsoft Research

November 26, 2014

Outline

• Overview of Software Analytics

• Selected projects

• Experience sharing on Software Analytics in practice

2

New Era…Software itself is changing...

Software Services

3

How people use software is changing…

Individual

Social

Isolated

Not much content
generation

Collaborative

Huge amount of artifacts
generated anywhere anytime

4

How software is built & operated is changing…

5

Data pervasive

Long product cycle

Experience & gut-feeling

In-lab testing

Informed decision making

Centralized development

Code centric

Debugging in the large

Distributed development

Continuous release

… …

Software Analytics

Software analytics is to enable software practitioners to
perform data exploration and analysis in order to
obtain insightful and actionable information for data-
driven tasks around software and services.

6

Software Analytics

Software analytics is to enable software practitioners to
perform data exploration and analysis in order to
obtain insightful and actionable information for data-
driven tasks around software and services.

7

Five dimensions

8

Research
Topics

Technology Pillars

Target
Audience

Connection to
Practice

Output

Research topics

9

Software

Users

Software

Users

Software

Development

Process

Software

Development

Process

Software

System

Software

System

• Covering different areas of
software domain

• Throughout entire development cycle

• Enabling practitioners to obtain
insights

Data sources

10

Runtime traces

Program logs

System events

Perf counters

…

Usage log

User surveys

Online forum posts

Blog & Twitter

…

Source code

Bug history

Check-in history

Test cases

…

Target audience – software practitioners

11

Developer

Tester

Program Manager

Usability engineer

Designer

Support engineer

Management personnel

Operation engineer

Output – insightful information

• Conveys meaningful and useful understanding or knowledge towards
completing the target task

• Not easily attainable via directly investigating raw data without aid of
analytics technologies

• Examples
• It is easy to count the number of re-opened bugs, but how to find out the

primary reasons for these re-opened bugs?

• When the availability of an online service drops below a threshold, how to
localize the problem?

12

Output – actionable information

• Enables software practitioners to come up with concrete solutions
towards completing the target task

• Examples
• Why bugs were re-opened?

• A list of bug groups each with the same reason of re-opening

• Why availability of online services dropped?
• A list of problematic areas with associated confidence values

• Which part of my code should be refactored?
• A list of cloned code snippets easily explored from different perspectives

13

Research topics and technology pillars

14

Software

Users

Software

Users

Software

Development

Process

Software

Development

Process

Software

System

Software

System

Information VisualizationInformation Visualization

Data Analysis AlgorithmsData Analysis Algorithms

Large-scale ComputingLarge-scale Computing

Vertical

Horizontal

Connection to practice

• Software Analytics is naturally tied with software development
practice

• Getting real

15

Real

Data

Real

Problems

Real

Users

Real

Tools

Approach

16

Data
Collection

Analytics
Technology

Development

Deployment

Feedback
Collection

Task
Definition

Various related efforts…

• Mining Software Repositories (MSR)

• Software Intelligence

• Software Development Analytics

17

Broader
Scope

Greater
Impact

Software

Analytics

http://www.msrconf.org/
A. E. Hassan and T. Xie. Software intelligence: Future of mining software engineering data. In Proc. FSE/SDP Workshop on Future of Software Engineering Research (FoSER 2010), pages 161–166, 2010.
R. P. Buse and T. Zimmermann. Analytics for software development. In Proc. FSE/SDP Workshop on Future of Software Engineering Research (FoSER 2010), pages 77–80, 2010.

Outline

• Overview of Software Analytics

• Selected projects

• Experience sharing on Software Analytics in practice

18

Selected projects

19

StackMine – Performance debugging in the large via
mining millions of stack traces

Scalable code clone analysis

Service Analysis Studio: Incident management for
online services

XIAO
Scalable code clone analysis

20

Yingnong Dang, Dongmei Zhang, Song Ge, Chengyun Chu, Yingjun Qiu, Tao Xie, XIAO: Tuning Code Clones at Hands of Engineers in Practice, in Proceedings of Annual Computer Security Applications
Conference 2012, (ACSAC 2012), Orlando, Florida, USA, December, 2012.

http://research.microsoft.com/en-us/groups/sa/xiao_acsac12_camerareadyfinal.pdf
http://www.acsac.org/2012/

Code clone research

• Tons of papers published in the past decade

• 8 years of International Workshop on

Software Clones (IWSC) since 2006

• Dagstuhl Seminar
• Software Clone Management towards Industrial Application (2012)

• Duplication, Redundancy, and Similarity in Software (2006)

21

Source: http://www.dagstuhl.de/12071

http://www.softwareclones.org/iwsc2014/
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=12071
http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=06301

XIAO: Code clone analysis

• Motivation
• Copy-and-paste is a common developer behavior

• A real tool widely adopted internally and externally

• XIAO enables code clone analysis in the following way
• High tunability

• High scalability

• High compatibility

• High explorability

22

[IWSC’11 Dang et.al.]

High tunability – what you tune is what you get

23

• Intuitive similarity metric
• Effective control of the degree of syntactical differences between two code snippets

• Tunable at fine granularity
• Statement similarity

• % of inserted/deleted/modified statements

• Balance between code structure and disordered statements

for (i = 0; i < n; i ++) {

a ++;

b ++;

c = foo(a, b);

d = bar(a, b, c);

e = a + c; }

for (i = 0; i < n; i ++) {

c = foo(a, b);

a ++;

b ++;

d = bar(a, b, c);

e = a + d;

e ++; }

High scalability

• Four-step analysis process

• Easily parallelizable based on source code partition

24

Pre-processing

Pruning Fine Matching

Coarse Matching

High compatibility

• Compiler independent

• Light-weight built-in parsers for C/C++ and C#

• Open architecture for plug-in parsers to support different languages

• Easy adoption by product teams
• Different build environment

• Almost zero cost for trial

25

High explorability

26

1. Clone navigation based on source tree hierarchy

2. Pivoting of folder level statistics

3. Folder level statistics

4. Clone function list in selected folder

5. Clone function filters

6. Sorting by bug or refactoring potential

7. Tagging

1 2 3 4 5 6

7

1. Block correspondence

2. Block types

3. Block navigation

4. Copying

5. Bug filing

6. Tagging

1

2

3

4

1

6

5

Scenarios and solutions

27

Quality gates at milestones
• Architecture refactoring

• Code clone clean up

• Bug fixing

Post-release maintenance
• Security bug investigation

• Bug investigation for sustained engineering

Development and testing
• Checking for similar issues before check-in

• Reference info for code review

• Supporting tool for bug triage

Online code clone search

Offline code clone analysis

Benefiting developer community

28

Available in Visual Studio 2012

Searching similar snippets
for fixing bug once

Finding refactoring
opportunity

More secure Microsoft products

29

Code Clone Search service integrated into workflow of Microsoft
Security Response Center

Over hundreds of million lines of code indexed across multiple
products

Real security issues proactively identified and addressed

Example – MS security bulletin MS12-034

Combined Security Update for Microsoft Office, Windows, .NET Framework, and Silverlight,
published: Tuesday, May 08, 2012

3 publicly disclosed vulnerabilities and seven privately reported involved. Specifically, one is
exploited by the Duqu malware to execute arbitrary code when a user opened a malicious Office
document

Insufficient bounds check within the font parsing subsystem of win32k.sys

Cloned copy in gdiplus.dll, ogl.dll (office), Silver Light, Windows Journal viewer

Microsoft Technet Blog about this bulletin

“However, we wanted to be sure to address the vulnerable code wherever it appeared across the
Microsoft code base. To that end, we have been working with Microsoft Research to develop a
“Cloned Code Detection” system that we can run for every MSRC case to find any instance of the
vulnerable code in any shipping product. This system is the one that found several of the copies of
CVE-2011-3402 that we are now addressing with MS12-034.”

30

http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Trojan:Win32/Duqu.C
http://blogs.technet.com/b/srd/archive/2012/05/08/ms12-034-duqu-ten-cve-s-and-removing-keyboard-layout-file-attack-surface.aspx

Three years of effort

31

Prototype

development

• Problem formulation

• Algorithm research

• Prototype

development

Early adoption

• Algorithm

improvement

• System / UX

improvement

Tech transfer

• System integration

• Process integration

StackMine
Performance debugging in the large via mining millions of
stack traces

32

Shi Han, Yingnong Dang, Song Ge, Dongmei Zhang, and Tao Xie, Performance Debugging in the Large via Mining Millions of Stack Traces, in Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012), Zurich, Switzerland, June 2012.

http://research.microsoft.com/en-us/groups/sa/stackmine_icse2012.pdf
http://www.ifi.uzh.ch/icse2012/

Performance issues in the real world

33

• One of top user complaints

• Impacting large number of users every day

• High impact on usability and productivity

High Disk I/O High CPU consumption

As modern software systems tend to get more and more complex, given limited time
and resource before software release, development-site testing and debugging become
more and more insufficient to ensure satisfactory software performance.

Performance debugging in the large

34

Pattern MatchingPattern Matching

Trace StorageTrace Storage

Trace collection

Bug update

Problematic
Pattern Repository

Problematic
Pattern Repository

Bug DatabaseBug Database
NetworkNetwork

Trace analysis
How many issues are still

unknown?
Which trace file should I

investigate first?

Bug filing

Key to issue
discovery

Bottleneck of
scalability

Problem definition

Given operating system traces collected from tens of thousands
(potentially millions) of users, how to help domain experts identify the
program execution patterns that cause the most impactful underlying
performance problems with limited time and resource?

35

Goal

Systematic analysis of OS trace sets that enables
• Efficient handling of large-scale trace sets

• Automatic discovery of new program execution patterns

• Effective prioritization of performance investigation

36

Challenges

37

Highly complex analysis
• Numerous program runtime combinations triggering performance

problems
• Multi-layer runtime components from application to kernel

intertwined

Highly complex analysis
• Numerous program runtime combinations triggering performance

problems
• Multi-layer runtime components from application to kernel

intertwined

Combination of expertise
• Generic machine learning tools without domain knowledge guidance

do not work well

Combination of expertise
• Generic machine learning tools without domain knowledge guidance

do not work well

Large-scale trace data
• TBs of trace files and increasing
• Millions of events in single trace stream

Large-scale trace data
• TBs of trace files and increasing
• Millions of events in single trace streamInternetInternet

38

Intuition

CPU sampled callstack

ntdll!UserThreadStart

…

Ntdll!WorkerThread
…

ole!CoCreateInstance
…

ole!OutSerializer::UnmarshalAtIndex

ole!CoUnmarshalInterface
…

What happens behind a typical UI-delay? An example of delayed browser tab creation -

ReadyThread

Callstacks

Wait

Callstacks

CPU Sampled

Callstacks

CPU Wait Ready CPUWaitCPUUI thread Ready

Time

Wait callstack

ntdll!UserThreadStart

Browser! Main

…

ntdll!LdrLoadDll
…

nt!AccessFault

nt!PageFault
…

Wait callstack
ntdll!UserThreadStart

Browser! Main
…

Browser!OnBrowserCreatedAsyncCallback
…

BrowserUtil!ProxyMaster::GetOrCreateSlave

BrowserUtil!ProxyMaster::ConnectToObject
…

rpc!ProxySendReceive
…

wow64!RunCpuSimulation

wow64cpu!WaitForMultipleObjects32

wow64cpu!CpupSyscallStub
…

ReadyThread callstack
ntdll!UserThreadStart

…

rpc!LrpcIoComplete
…

user32!PostMessage
…

win32k!SetWakeBit
nt!SetEvent

…

ReadyThread callstack

nt!KiRetireDpcList

nt!ExecuteAllDpcs
…

nt!IopfCompleteRequest
…

nt!SetEvent

…

Underlying Disk I/O

Worker thread CPU

Unexpected long execution

Ready

CPU sampled callstack

ntdll!UserThreadStart

…

ntdll!WorkerThread
…

ole!CoCreateInstance
…

ole!OutSerializer::UnmarshalAtIndex

ole!CoUnmarshalInterface
…

CPU sampled callstack

ntdll!UserThreadStart

…

ntdll!WorkerThread
…

ole!CoCreateInstance
…

ole!OutSerializer::UnmarshalAtIndex

ole!CoUnmarshalInterface
…

Approach

Formulate as a callstack mining and clustering problem

39

Problematic program

execution patterns

Problematic program

execution patterns
Callstack patternsCallstack patternsPerformance IssuesPerformance Issues

Caused by

Discovered by mining & clustering costly patterns

Mainly represented by

Technical highlights

• Machine learning for system domain
• Formulate the discovery of problematic execution patterns as callstack mining

and clustering

• Systematic mechanism to incorporate domain knowledge

• Interactive performance analysis system
• Parallel mining infrastructure based on HPC+MPI

• Visualization aided interactive exploration

40

Impact

41

“We believe that the MSRA tool is highly valuable and much more
efficient for mass trace (100+ traces) analysis. For 1000 traces, we
believe the tool saves us 4-6 weeks of time to create new signatures,
which is quite a significant productivity boost.”

Highly effective new issue discovery on Windows mini-hang

Continuous impact on future Windows versions

Service Analysis Studio
Incident management for online services

42

Jian-Guang Lou, Qingwei Lin, Rui Ding, Qiang Fu, Dongmei Zhang and Tao Xie, Software Analytics for Incident Management of Online Services: An Experience Report, in Proceedings of the 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2013), Experience papers, Palo Alto, California, November 2013.

http://research.microsoft.com/apps/pubs/?id=202451
http://ase2013.org/

Motivation

• Online services are increasingly popular and important

• High service quality is the key

• Incident management is a critical task to ensure service quality

43

Incident management: workflow

44

Alert On-
Call

Engineers
(OCEs)

Investigate
the problem

Restore the
service

Fix root
cause via

postmortem
analysis

Incident management: characteristics

45

Shrink-Wrapped
Software Debugging

Root Cause and Fix

Debugger

Controlled Environment

Online Service
Incident Management

Workaround

No Debugger

Live Data

Incident management: challenges

46

Large-volume and noisy data

Highly complex problem space

Knowledge scattered and not well organized

Few people with knowledge of entire system

Data sources

Name Description Examples

Key Performance
Indicators (KPI)

Measurements indicating the major quality
perspectives of an online service

Request failure rate, average request
latency, etc.

Performance
counters and system
events

Measurements and events indicating the
status of the underlying system and
applications

CPU, disk queue length, I/O, request
workload, SQL-related metrics, and
application-specific metrics, etc.

User requests Information on user requests Request return status, processing time,
consumed resources, etc.

Transaction logs Generated during execution, recording system
runtime behaviors when processing requests

Timestamp, request ID, thread ID, event
ID, and detailed text message, etc.

Incident repository Historical records of service incidents Incident description, investigation
details, restoration solution, etc.

47

Service Analysis Studio (SAS)

• Goal

Given an incident in an online service, effectively helping service
engineers reduce Mean Time To Restore (MTTR).

• Design principals
• Automating data analysis

• Handling heterogeneous data sources

• Accumulating knowledge

• Supporting human-in-the-loop (HITL)

48

Data analysis techniques

49

Data-driven
service

analytics

Identifying incident beacons
from system metrics

Mining suspicious execution
patterns from transaction logs

Mining resolution solutions
from historical incidents

Impact

Deployment

• SAS deployed to worldwide datacenters of Service X in June 2011

• Five more updates since first deployment

Usage

• Heavily used by On-Call Engineers of Service X for about 2 years

• Helped successfully diagnose ~76% of service incidents

50

Lessons learned

• Understanding and solving real problems

• Understanding data and system

• Handling data issues

• Making SAS highly usable

• Achieving high availability and performance

• Delivering step-by-step

51

Understanding and solving real problems

52

• Working side-by-side with On-Call Engineers

• Targeting at reducing MTTR

• Focusing on addressing challenges in real-world scenarios

Understanding data and system

53

Techniques Practical Problems

Handling data issues

(1) Missing/duplicated

(2) Buggy

(3) Disordered

(1) Preprocessing

(2) Designing robust
algorithms

Data preprocessing
cannot be perfect.
Robust algorithms are
in great need.

54

Data issues Approach Experience

Making SAS highly usable

55
Actionable

Understandable

Easy to navigate

Achieving high availability and performance

• SAS is also a service
• To serve On-Call Engineers at any time with high performance

• Critical to reducing MTTR of services

• Auto recovery
• Continuously monitored

• Check-point mechanism adopted

• Backend service + On-demand analysis

56

Delivering step-by-step

• Demonstrating value and building trust
• Deployment in production has cost and risk

• In-house  dogfood one datacenter  worldwide datacenters

• Getting timely feedback
• Requirements may not be clear early on and requirements may change

• Gaining troubleshooting experiences from On-Call Engineers

• Understanding how SAS was used

• Identifying direction of improvement

57

Outline

• Overview of Software Analytics

• Selected projects

• Experience sharing on Software Analytics in Practice

58

Analytics is the means to the end

59

Interesting results

Actionable results

vs.

Problem hunting

vs.

Problem driven

Beyond the “usual” mining

60

Mining vs. matching

Automatic vs. interactive

Researchers vs. practitioners

Keys to making real impact

• Engagement of practitioners

• Walking the last mile

• Combination of expertise

61

Summary

62

Together let us walk the exciting journey to make great impact!

Q & A

63

http://research.microsoft.com/groups/sa/

http://research.microsoft.com/groups/sa

